Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Disease spread in small-size directed networks: epidemic threshold, correlation between links to and from nodes, and clustering.

Identifieur interne : 001B37 ( Main/Exploration ); précédent : 001B36; suivant : 001B38

Disease spread in small-size directed networks: epidemic threshold, correlation between links to and from nodes, and clustering.

Auteurs : Mathieu Moslonka-Lefebvre [France] ; Marco Pautasso ; Mike J. Jeger

Source :

RBID : pubmed:19545575

Descripteurs français

English descriptors

Abstract

Network epidemiology has mainly focused on large-scale complex networks. It is unclear whether findings of these investigations also apply to networks of small size. This knowledge gap is of relevance for many biological applications, including meta-communities, plant-pollinator interactions and the spread of the oomycete pathogen Phytophthora ramorum in networks of plant nurseries. Moreover, many small-size biological networks are inherently asymmetrical and thus cannot be realistically modelled with undirected networks. We modelled disease spread and establishment in directed networks of 100 and 500 nodes at four levels of connectance in six network structures (local, small-world, random, one-way, uncorrelated, and two-way scale-free networks). The model was based on the probability of infection persistence in a node and of infection transmission between connected nodes. Regardless of the size of the network, the epidemic threshold did not depend on the starting node of infection but was negatively related to the correlation coefficient between in- and out-degree for all structures, unless networks were sparsely connected. In this case clustering played a significant role. For small-size scale-free directed networks to have a lower epidemic threshold than other network structures, there needs to be a positive correlation between number of links to and from nodes. When this correlation is negative (one-way scale-free networks), the epidemic threshold for small-size networks can be higher than in non-scale-free networks. Clustering does not necessarily have an influence on the epidemic threshold if connectance is kept constant. Analyses of the influence of the clustering on the epidemic threshold in directed networks can also be spurious if they do not consider simultaneously the effect of the correlation coefficient between in- and out-degree.

DOI: 10.1016/j.jtbi.2009.06.015
PubMed: 19545575


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Disease spread in small-size directed networks: epidemic threshold, correlation between links to and from nodes, and clustering.</title>
<author>
<name sortKey="Moslonka Lefebvre, Mathieu" sort="Moslonka Lefebvre, Mathieu" uniqKey="Moslonka Lefebvre M" first="Mathieu" last="Moslonka-Lefebvre">Mathieu Moslonka-Lefebvre</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Université Paris-Sud XI, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Department of Biology, Université Paris-Sud XI, 91405 Orsay</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pautasso, Marco" sort="Pautasso, Marco" uniqKey="Pautasso M" first="Marco" last="Pautasso">Marco Pautasso</name>
</author>
<author>
<name sortKey="Jeger, Mike J" sort="Jeger, Mike J" uniqKey="Jeger M" first="Mike J" last="Jeger">Mike J. Jeger</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19545575</idno>
<idno type="pmid">19545575</idno>
<idno type="doi">10.1016/j.jtbi.2009.06.015</idno>
<idno type="wicri:Area/Main/Corpus">001A74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A74</idno>
<idno type="wicri:Area/Main/Curation">001A74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A74</idno>
<idno type="wicri:Area/Main/Exploration">001A74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Disease spread in small-size directed networks: epidemic threshold, correlation between links to and from nodes, and clustering.</title>
<author>
<name sortKey="Moslonka Lefebvre, Mathieu" sort="Moslonka Lefebvre, Mathieu" uniqKey="Moslonka Lefebvre M" first="Mathieu" last="Moslonka-Lefebvre">Mathieu Moslonka-Lefebvre</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Université Paris-Sud XI, 91405 Orsay, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Department of Biology, Université Paris-Sud XI, 91405 Orsay</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Orsay</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pautasso, Marco" sort="Pautasso, Marco" uniqKey="Pautasso M" first="Marco" last="Pautasso">Marco Pautasso</name>
</author>
<author>
<name sortKey="Jeger, Mike J" sort="Jeger, Mike J" uniqKey="Jeger M" first="Mike J" last="Jeger">Mike J. Jeger</name>
</author>
</analytic>
<series>
<title level="j">Journal of theoretical biology</title>
<idno type="eISSN">1095-8541</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Disease Outbreaks (MeSH)</term>
<term>Disease Transmission, Infectious (MeSH)</term>
<term>Models, Biological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de regroupements (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Transmission de maladie infectieuse (MeSH)</term>
<term>Épidémies de maladies (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cluster Analysis</term>
<term>Disease Outbreaks</term>
<term>Disease Transmission, Infectious</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de regroupements</term>
<term>Animaux</term>
<term>Modèles biologiques</term>
<term>Transmission de maladie infectieuse</term>
<term>Épidémies de maladies</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Network epidemiology has mainly focused on large-scale complex networks. It is unclear whether findings of these investigations also apply to networks of small size. This knowledge gap is of relevance for many biological applications, including meta-communities, plant-pollinator interactions and the spread of the oomycete pathogen Phytophthora ramorum in networks of plant nurseries. Moreover, many small-size biological networks are inherently asymmetrical and thus cannot be realistically modelled with undirected networks. We modelled disease spread and establishment in directed networks of 100 and 500 nodes at four levels of connectance in six network structures (local, small-world, random, one-way, uncorrelated, and two-way scale-free networks). The model was based on the probability of infection persistence in a node and of infection transmission between connected nodes. Regardless of the size of the network, the epidemic threshold did not depend on the starting node of infection but was negatively related to the correlation coefficient between in- and out-degree for all structures, unless networks were sparsely connected. In this case clustering played a significant role. For small-size scale-free directed networks to have a lower epidemic threshold than other network structures, there needs to be a positive correlation between number of links to and from nodes. When this correlation is negative (one-way scale-free networks), the epidemic threshold for small-size networks can be higher than in non-scale-free networks. Clustering does not necessarily have an influence on the epidemic threshold if connectance is kept constant. Analyses of the influence of the clustering on the epidemic threshold in directed networks can also be spurious if they do not consider simultaneously the effect of the correlation coefficient between in- and out-degree.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19545575</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>02</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2009</Year>
<Month>09</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8541</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>260</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Journal of theoretical biology</Title>
<ISOAbbreviation>J Theor Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Disease spread in small-size directed networks: epidemic threshold, correlation between links to and from nodes, and clustering.</ArticleTitle>
<Pagination>
<MedlinePgn>402-11</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jtbi.2009.06.015</ELocationID>
<Abstract>
<AbstractText>Network epidemiology has mainly focused on large-scale complex networks. It is unclear whether findings of these investigations also apply to networks of small size. This knowledge gap is of relevance for many biological applications, including meta-communities, plant-pollinator interactions and the spread of the oomycete pathogen Phytophthora ramorum in networks of plant nurseries. Moreover, many small-size biological networks are inherently asymmetrical and thus cannot be realistically modelled with undirected networks. We modelled disease spread and establishment in directed networks of 100 and 500 nodes at four levels of connectance in six network structures (local, small-world, random, one-way, uncorrelated, and two-way scale-free networks). The model was based on the probability of infection persistence in a node and of infection transmission between connected nodes. Regardless of the size of the network, the epidemic threshold did not depend on the starting node of infection but was negatively related to the correlation coefficient between in- and out-degree for all structures, unless networks were sparsely connected. In this case clustering played a significant role. For small-size scale-free directed networks to have a lower epidemic threshold than other network structures, there needs to be a positive correlation between number of links to and from nodes. When this correlation is negative (one-way scale-free networks), the epidemic threshold for small-size networks can be higher than in non-scale-free networks. Clustering does not necessarily have an influence on the epidemic threshold if connectance is kept constant. Analyses of the influence of the clustering on the epidemic threshold in directed networks can also be spurious if they do not consider simultaneously the effect of the correlation coefficient between in- and out-degree.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Moslonka-Lefebvre</LastName>
<ForeName>Mathieu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Université Paris-Sud XI, 91405 Orsay, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pautasso</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jeger</LastName>
<ForeName>Mike J</ForeName>
<Initials>MJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Theor Biol</MedlineTA>
<NlmUniqueID>0376342</NlmUniqueID>
<ISSNLinking>0022-5193</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="Y">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018562" MajorTopicYN="Y">Disease Transmission, Infectious</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2009</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>06</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19545575</ArticleId>
<ArticleId IdType="pii">S0022-5193(09)00267-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.jtbi.2009.06.015</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Orsay</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Jeger, Mike J" sort="Jeger, Mike J" uniqKey="Jeger M" first="Mike J" last="Jeger">Mike J. Jeger</name>
<name sortKey="Pautasso, Marco" sort="Pautasso, Marco" uniqKey="Pautasso M" first="Marco" last="Pautasso">Marco Pautasso</name>
</noCountry>
<country name="France">
<region name="Île-de-France">
<name sortKey="Moslonka Lefebvre, Mathieu" sort="Moslonka Lefebvre, Mathieu" uniqKey="Moslonka Lefebvre M" first="Mathieu" last="Moslonka-Lefebvre">Mathieu Moslonka-Lefebvre</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19545575
   |texte=   Disease spread in small-size directed networks: epidemic threshold, correlation between links to and from nodes, and clustering.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19545575" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024